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Detection of Multiple Change Points from

Clustering Individual Observations

JOE H. SULLIVAN

Mississippi State University, Starkville, MS 39762

In the preliminary analysis, also called Stage 1 analysis or retrospective analysis, of statistical process

control, one may confront multiple shifts and/or outliers, especially with a large number of observations.

This paper addresses the analysis of individual observations, and shows that the X-chart and CUSUM chart

may fail to detect the presence of any shifts or outliers when multiple shifts and/or outliers are present.

A new method is introduced which is effective in detecting single or multiple shifts and/or outliers. The

algorithm and an effective stopping rule that controls the false detection rate are described. Suggestions

are given for reducing masking and for diagnosing the number of shifts or outliers present.

Introduction

M
UCH of the work in statistical process control
(SPC) has focused on the “known parameters”

problem, also called the prospective or “Phase II”
problem, of rapidly detecting the presence of special
causes of variation when the true in-control (IC) pro-
cess parameters are accurately estimated or known.
However, every process monitoring situation has an
initial phase in which the IC parameters are unknown
and must be estimated. Often, a Phase I, Stage
1 analysis, also called a retrospective or historical
analysis, is used in which the process is operated
for a while, and the resulting observations are col-
lected and analyzed as a batch. The Stage 1 anal-
ysis involves simultaneously detecting the presence
of special causes of variation and estimating the IC
process parameters. Especially when it is appropri-
ate to analyze individual observations, the presence
of special causes can impair the parameter estima-
tion, in turn masking their presence. Retrospective
analysis is fundamentally different from prospective
monitoring because of the masking problem and be-
cause there is no need to quickly signal an out-of-
control (OC) condition. The retrospective stage of
SPC closely resembles the change-point problem of
statistical analysis.

Detecting one or more change points in a batch of
observations has attracted considerable investigation
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in the statistical, engineering, and econometric liter-
ature. The general problem is as follows. Suppose
there is an ordered sequence of observations (possi-
bly multivariate), usually, but not necessarily, taken
at equally spaced times. There is a change point be-
tween two successive observations if their statistical
distributions are different. Between change points,
the distributions are usually considered to be iden-
tical. Sometimes a model includes a deterministic
change in the parameters over time, such as a lin-
ear trend, and a change point would be defined by
an abrupt change in one or more parameters of the
model rather than in the constantly changing sta-
tistical distribution itself. It is also common to re-
fer to the last observation before the shift as the
change point, although, strictly speaking, the change
point comes at some time between the successive
observations. Change points in the distribution of
multivariate observations are also studied by Sulli-
van and Woodall (2000), and shifts in the regression
parameters that define the relationship of multivari-
ate observations are studied by Quandt (1958, 1960,
and 1972). See Krishnaiah and Miao (1988), Zacks
(1991), Barry and Hartigan (1993), and Lai (1995)
for overviews.

Vostrikova (1981) and others have pointed out
that a method for detecting a single change may be
able to detect multiple changes by binary segmenta-
tion. If a change is detected, then the data are di-
vided at the most likely location for a single change,
and the change-point procedure is applied to each
new group of data. This process is repeated until
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no group shows evidence of a change. For binary
segmentation to be successful, it must be possible to
detect the presence of multiple changes. However,
when multiple change points are present, the series
of observations need not follow any single model or
regime, so that parameter estimation may be inac-
curate. The presence of multiple changes may also
impair the location estimator, so that the data are
not segmented at the proper location.

McGee and Carleton (1970) suggest the multiple
change point model

yi = X′
iβj + εi, Tj−1 < i ≤ Tj ,

j = 1, ..., (R + 1), i = 1, . . . , m,

where yi is the ith observed value, Xi is a p vector
of predictor variables, βj is a parameter vector, Tj is
one of the R change points, T0 = 0, and TR+1 = m,
where m is the number of observations. The errors
are normal and independent with zero mean and con-
stant variance. McGee and Carleton (1970) describe
their algorithm as a “wedding of hierarchical cluster-
ing and standard regression theory,” and it operates
as follows.

The algorithm begins at what is called level 1 by
considering all possible clusters of consecutive obser-
vations having exactly the minimum size, p+1. The
goodness of fit measure for a cluster defined by its
first observaion, i0, and number of observations, nc,
is

φ =
1

nc − p

i0+nc−1∑
i=i0

ε̂2
i ,

The cluster minimizing φ is “fixed,” meaning that
these observations remain clustered in all subsequent
steps. At the next step, level 2, all possible clus-
ters of p+1 consecutive observations are considered,
but eliminating from consideration those that include
any observation that is part of an already fixed clus-
ter. Two additional clusters are considered, the level-
1-fixed cluster augmented by the adjacent previous
observation and the level-1-fixed cluster augmented
by the adjacent subsequent observation (unless the
level-1-fixed cluster includes the first or last observa-
tion). Among those choices, the cluster minimizing
φ is fixed, and the algorithm proceeds to the next
step.

At each step all possible new clusters of minimal
size are considered, subject to the constraints that
the observations must be consecutive and must in-
clude no observation that is part of an already fixed
cluster. In addition, all possible clusters formed by

augmenting an already fixed cluster in either direc-
tion are considered. Sometimes two fixed clusters
will be adjacent, so the minimum augmentation is
more than one observation, since once observations
are “fixed” into a cluster they cannot be separated in
subsequent steps. The cluster minimizing φ is fixed
at this step. The process continues in this way un-
til all observations are joined into a single cluster or
the stopping rule is satisfied. Satisfying the stop-
ping rule signals the detection of one or more change
points, the locations of which are estimated by the
remaining boundary or boundaries.

The cluster fixed at each step will be one of four
types: (a) a new cluster of minimal size; (b) an exist-
ing cluster extended to include the adjacent previous
observation; (c) an existing cluster extended to in-
clude the adjacent subsequent observation; and (d)
a merging of two adjacent fixed clusters. McGee and
Carleton (1970) suggest stopping at the first type (d)
combination with a significant F -test statistic, using
the F -test for a single regression model vs. sepa-
rate models. Thus, they regard that boundary and
all other remaining boundaries as estimated change
point locations. McGee and Carleton (1970) note
that

Such a decision rule might be modified according to how
many isolated points remain. For example, we might
decide ahead of time that we will not stop the hierar-
chical clustering until all but two of the original points
are included in fixed clusters. As soon as all but two
of the original points are thus included, we examine the
probabilities associated with the F values for Type (d)
clusters. The particular stopping rules adopted will re-
flect the best judgment of the investigator.

The hierarchical clustering algorithm can be viewed
as a specialization of the EM algorithm proposed by
Dempster, Laird, and Rubin (1977).

Hawkins (1976) generalizes the McGee and Carle-
ton (1970) model to

yt = fj [t] + εt, Tj−1 < t ≤ Tj , j = 1, ..., (R + 1),

and reviews the literature in the context of this
model. With normally distributed, zero mean er-
rors, he distinguishes different situations depending
on: (a) whether or not continuity is imposed on
fj [Tj ] and fj+1[Tj ] for some or all change point loca-
tions Tj ; (b) whether or not the errors have the same
variance in all segments (homoscedasticity); and (c)
whether the maximum number of change points is
limited to one or not.

Hawkins (1976) briefly addresses the issue of esti-
mating the number of change points present, follow-
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ing McGee and Carleton (1970) in using a sequence
of significance tests on adjacent clusters. Hawkins
notes the issue of multiple comparisons, writing that
“the test statistics represent the most significant of
a number of possible splits, and so should be inter-
preted conservatively.” However, the estimation rule
is not clearly stated.

Hawkins (1976) sets forth two alternative solu-
tions, the first of which uses dynamic programming
to find the exact change point locations that maxi-
mize the likelihood, subject to the restriction that all
segments have at least p + 1 observations, one more
than the number of parameters to be estimated in
fj . This restriction, required to make the likelihood
finite, precludes the identification of clusters smaller
than p+1 and so impairs the effectiveness of detect-
ing outliers. Hawkins gives an efficient algorithm for
the exact solution that he considered, at that time,
suitable for up to about 300 observations. Hawkins
(2001) extends the dynamic programming algorithm
to finding the exact maximum likelihood solution for
any distribution of the exponential family. Although
this algorithm is computationally fast enough to be
applied to a large number of observations with only
a personal computer, it still has the minimum size
restriction that impairs outlier detection.

Even with an efficient dynamic programming al-
gorithm, Hawkins (1976) notes that the computa-
tional requirements increase with the square of the
number of observations. He proposes an alternative
“hierarchical” solution whose computational require-
ments are proportional to the product of the num-
ber of observations and the number of change points.
This method is computationally feasible for a much
larger number of observations. Furthermore, clusters
as small as a single observation are permitted, sug-
gesting that the hierarchical approach may be better
suited to the detection of outliers.

As Hawkins (1976) points out,

. . . there is not necessarily any connection between the
MLEs of the change points of an r - 1 segment model
and those of an r segment one. However, in practice
one would expect that if a change point were “real”, its
MLE would be stable as the number of segments fitted
was increased. This reasoning suggests that one might
impose the constraint that the r segment model utilizes
the change points of the r - 1 segment model together
with one fresh change point.

With these additional requirements, it is clear that
the solution will proceed hierarchically, and two meth-
ods of solution are by merging successively (as proposed
by McGee and Carleton) and by splitting successively.
The solution proposed here is a marriage of these tech-

niques in which, at every iteration, each segment is ex-
amined to see whether it can be split into two signif-
icantly different segments, and each pair of adjacent
segments is examined for the possibility of merging.
This adaptation of the two strictly hierarchical methods
yields a solution that is not necessarily hierarchical, and
hence avoids the defect that a change point selected at
an early stage of the analysis may lose its importance
at a later stage when the segments on either side of it
have been subdivided.

Although it is true that the hierarchical method
can proceed either by merging, splitting, or a combi-
nation, there is a reason to prefer merging. Splitting
corresponds to binary segmentation and is more sus-
ceptible to masking. If multiple change points are
present, then the series, taken as a whole, may not
follow the model for any set of parameters. Further-
more, it may not be possible to partition the series
into two segments such that each segment follows the
model. Thus, splitting and binary segmentation may
fail to recognize the presence of any change points
at all. On the other hand, the merging approach
joins only those observations that conform well to
a specific model. At each step, the model param-
eters are more accurately estimated for each clus-
ter. The more accurate parameter estimation miti-
gates the masking problem and makes the identifi-
cation of change point locations more accurate, and
this logic is supported by simulation using a simple
model with multiple step shifts in the mean. The
defect of hierarchical clustering noted by Hawkins
(1976) is well recognized when the clusters are not
constrained by some ordering of the observations, in
which situation a fundamental issue is estimating the
parameters appropriate for each cluster. In that con-
text, it is helpful to allow early clusters that were
formed with poorly estimated parameters to be ad-
justed later when the parameter estimates are apt to
be more accurate. These considerations also seem to
apply in the current situation with splitting, but not
merging. Hawkins’ observation above suggests that
if there are R “real” change points, then merging
would remove the other, non-significant boundaries
first. Thus with merging there seems to be little ben-
efit in considering the splitting of an already fixed
cluster, but it would be simple to do so.

The models of Hawkins (1976) and McGee and
Carleton (1970) may be generalized to consider
regime shifts between more general time series mod-
els. For example, the observations may be vectors
rather than scalars, the conditional mean vector need
not be independent of past observations, and the er-
ror vectors need not be independent. Thus, a pro-
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posed, more general, change point model is

yt = gj [xt,wt], Tj−1 < t ≤ Tj , j = 1, ..., (R+1),

where yt is the pn vector of observed variables for
observation t, xt is a pp regressor vector for observa-
tion t, wt is a ps vector of possibly unobserved state
variables at observation t, and gj gives the model for
regime j. The vector autoregessive model (Litterman
(1986)) is obtained with

gj [xt,yt] = fj [xt] + Φj [L] yt + εt,

where Φj [L] is the lag operator of order pL, which
includes pL − 1 distinct pn × pn parameter matrices,
and εt is a pn random vector with expectation zero.
The model may be simplified to a linear model with
fj [xt] = Bjxt, where Bj is a pn by pp parameter
matrix. The errors may be uncorrelated but possibly
heteroscedastic with uncorrelated errors specified by

E[εt ε′
τ ] =

{Ωj for t = τ
0 otherwise.

Alternatively, the more general conditional het-
eroscedastic model may be used, in which case
the conditional covariance matrix is specified as an
ARMA[pa, pm] model of the innovation matrices εtε

′
t

with the model parameters constant between change
points.

The model can be written as a vector structural
equations model (Giannini, 1992)

gj [xt,wt] = Γjwt

Φj [L]wt = fj [xt] + εt,

where Γj is a pn × ps observation matrix. The struc-
tural model can include the conditional heteroscedas-
tic error model.

Instead of detecting multiple changes one at a
time, an alternative is to detect them all at once.
The number of change points can be viewed as a
model parameter and estimated by a penalized like-
lihood method that maximizes Lq − Fkq, where q
indexes the alternative models, Lq is the maximized
likelihood for model q, kq is the number of parame-
ters in model q, and F is the dimensionality penalty.
Two of the most commonly used criteria are the
Akaike information criterion (AIC, Akaike (1974)),
corresponding to F = 1, and the Schwarz informa-
tion criterion (SIC, Schwarz (1978)), also called the
Bayesian information criterion (BIC), corresponding
to F = 0.5�n[m], where �n[·] is the natural logarithm.
In comparing these approaches, Diebold (2001, p.
87) states that when the true model is fixed, the SIC
is consistent but the AIC is not, while the AIC is

asymptotically efficient but the SIC is not if the true
model dimensionality increases with m in a specified
way. The SIC penalizes additional parameters more
heavily, except for small m, and so tends to select a
more parsimonious model. Many other criteria have
been proposed, including adaptive choices of F . See
George (2001) for further discussion.

Yao (1988) established some properties of the SIC
in detecting multiple change points and in estimating
their number and locations. However, his analysis as-
sumed knowledge of the change point locations that
maximized the likelihood function for each possible
number of changes. As Hawkins (1976) shows, find-
ing the exact maximum likelihood locations becomes
computationally infeasible with a large number of ob-
servations. Sullivan (2002) discusses the SIC in this
context, using hierarchical clustering to estimate the
maximum likelihood locations and showing the weak-
ness of binary segmentation in detecting the presence
of multiple change points. For example, the Chernoff
and Zacks (1964) test, although effective in detecting
a single change point, is shown to be ineffective in de-
tecting the presence of two step shifts in the mean.
The lack of sensitivity extends to many other con-
figurations of multiple change points. A comparison
of the results in Sullivan (2002) with those of this
paper shows that the method proposed here is more
accurate in controlling the false detection probabil-
ity and in estimating the number of change points.
Therefore, the SIC is not considered further in this
article.

The array of possible change point models is over-
whelming. It seems reasonable to make a beginning
by considering the simplest possible multiple change
point situation, univariate observations with inde-
pendent, identically distributed (i.i.d.) normal errors
and a constant mean between change points, which
is described in the next section.

Then, the following section gives a numerical ex-
ample with four shifts to demonstrate the proposed
clustering algorithm and its advantage compared
with an X-chart (Shewhart chart) and a CUSUM
chart. Next, the sequence of distances is viewed as
a single multivariate observation, and its expected
value is estimated by simulation for the IC and sev-
eral alternative OC situations. The proposed cluster-
ing algorithm is shown to have a more uniform de-
tection probability than the CUSUM and X-charts.
The CUSUM is not effective in detecting outliers in
any number, and the X-chart is not effective in de-
tecting a small number of shifts.
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Methodology with a Simple Model

Suppose there are m independent observations,
x1, x2, . . . , xm, from one or more univariate normal
distributions all having the same variance σ2. There
are R shifts in the mean, and the shift locations are
Tr, r = 1, . . . , R, subject to 0 < T1 < . . . < TR < m.
Let θi represent the mean of observation xi, and de-
fine T0 = 0 and TR+1 = m. Then, θi = µr, for
Tr−1 < i ≤ Tr , for r = 1, . . . , R + 1, subject to
µr �= µr+1. We want to determine if the process is
IC, which corresponds to R = 0. If the process is not
IC, we can obtain diagnostic information by estimat-
ing the number of shifts and their location(s).

The clustering algorithm starts with m−1 bound-
aries separating the observations into singleton clus-
ters. The boundaries are indexed by kj , and associ-
ated with each boundary is a location lk, the last ob-
servation in the cluster, and a distance dk, measuring
the dissimilarity of the means of its adjacent clusters.
The absolute value of the Student’s t-statistic for a
difference in two means can be used, which is given
by

dk =
|x̄k − x̄k+1|
s
√

mk+mk+1
mkmk+1

(1)

where mk and mk+1 are the number of observations
in the adjacent clusters, x̄k and x̄k+1 are the sample
means, and s is an estimate of the common standard
deviation of all clusters. The ranking of the distances
does not depend on the value of s, so without any loss
of generality the value s = 1 is used.

At the start of step K, K = 1, . . . , m − 1, there
are m − K boundaries. The one with the smallest
distance (k∗ = arg min [dk]) is removed, and the re-
maining distances are updated. The location of the
removed boundary (l∗m−K = lk∗) and its distance
(d∗m−K = dk∗) are saved. The process continues un-
til all the boundaries are removed. Note that the
sequence {d∗i } begins with the distance of the last-
removed boundary, d∗

1.

Logically, if the process is IC, then the sequence
{d∗i } should decrease slowly and smoothly. If there
are, say, R large shifts, then d∗

R − d∗
R+1 should be

“large,” and the distances should decrease slowly be-
yond d∗R+1. These distances can be used in a decision
rule for recognizing the presence of multiple shifts, as
discussed later.

Sullivan (2002) notes that the hierarchical clus-
tering with the simple model of iid normal errors
and step shifts in mean has an equivalent regression

model. Let x = Uβ + σε, where x is the vector
of m observations, ε is a vector of m independent,
standard normal errors, and U = [ui,j = Ii[j]] =
[u(1) · · ·u(m)] is an m × m matrix. The indicator
function Ii[j] = 1 if j ≤ i and 0 otherwise. The vec-
tor β gives the shifts in the mean, βi+1 = θi+1 − θi

for i ∈ {T1, T2, . . . , TR}, and 0 otherwise. Backward
elimination of the variables u(i) from this model gives
the same sequence as the merging direction for the
simple model. Forward selection, which corresponds
to splitting, was found (using simulation) to be less
accurate, due to masking.

One of the main difficulties in the Stage 1 analysis
with individual observations is accurately estimating
σ in the presence of multiple shifts and/or outliers.
Typically, the average of the moving ranges is used.
It is of interest to construct an alternative robust
estimator and compare it with the estimator based
on the average of the moving ranges and the sam-
ple standard deviation. Suppose there are ns shifts
and no outliers. Then, if the hierarchical clustering
works as intended, the clusters would consist of ho-
mogeneous observations with standard deviation σ
until fewer than ns + 2no boundaries remain. This
suggests that some suitable fraction of the observa-
tions, such as 0.8m, could be chosen in advance, and,
when that number of boundaries had been removed,
the sum of squares within clusters could be used to
form a robust estimator of σ. The optimal fraction to
use depends on the dimension, the number of obser-
vations, the maximum number of shifts and outliers
that may be present, and the objective criterion. To
initially explore this topic, a robust estimator was
defined and calculated as a part of the simulations
at the point where 0.2m boundaries remain.

The robust estimator used was

s2
r =

1
m − K − 1

K+1∑
k=1

Tk∑
i=1+Tk−1

(xi − x̄k)2,

where K = 0.2m, rounded to the nearest integer, and
the mean of cluster k is

x̄k =
1

Tk − Tk−1

Tk∑
i=1+Tk−1

xi, 1 ≤ k ≤ K + 1.

Simulation is used to estimate the ratio of the ex-
pected value of s2

r to the true variance with IC data,
and this ratio is used to remove the bias. Later, the
performance of this estimator is compared with the
estimator based on the average of the moving ranges
and the sample standard deviation.
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TABLE 1. Observations and Calculated Statistics for the Example

i Xi CUSUMi l∗i d∗
i i Xi CUSUMi l∗i d∗

i

1 1.190 1.117 48 3.341 31 1.630 2.503 30 1.142
2 1.230 2.277 37 5.382 32 1.590 4.044 52 0.805
3 1.510 3.734 23 4.237 33 0.407 4.332 51 1.118
4 −0.531 3.027 15 5.876 34 −0.128 4.053 56 1.071
5 −0.705 2.137 10 2.622 35 1.840 5.859 17 0.988
6 0.429 2.448 6 1.934 36 0.346 6.082 12 0.592
7 1.600 4.000 3 2.705 37 −0.104 5.828 13 0.827
8 1.830 5.795 54 1.702 38 −1.850 3.725 58 0.640
9 1.560 7.305 53 2.309 39 −0.410 3.147 43 0.607
10 0.661 7.862 32 1.756 40 −0.750 2.209 55 0.552
11 −0.727 6.948 29 2.287 41 −1.950 −0.001 33 0.529
12 −0.536 6.237 35 0.897 42 0.330 0.205 36 0.445
13 0.210 6.316 34 1.942 43 −1.460 −1.485 2 0.343
14 −0.626 5.509 41 0.711 44 −0.757 −2.430 44 0.339
15 0.933 6.354 42 1.891 45 −1.100 −3.739 39 0.336
16 −1.580 4.537 21 1.551 46 −2.210 −6.224 28 0.289
17 −1.490 2.815 20 1.195 47 −0.502 −6.899 26 0.268
18 −2.400 0.128 18 1.721 48 −0.752 −7.840 47 0.247
19 −0.710 −0.767 14 1.692 49 1.380 −6.521 8 0.177
20 −0.691 −1.643 22 1.652 50 1.340 −5.245 7 0.227
21 −2.310 −4.234 27 1.650 51 0.100 −5.282 11 0.189
22 0.210 −4.155 24 1.482 52 1.230 −4.122 4 0.172
23 −1.460 −5.845 40 1.147 53 −0.040 −4.308 25 0.148
24 0.210 −5.766 38 1.450 54 2.610 −1.686 57 0.102
25 1.280 −4.553 50 1.425 55 0.379 −1.428 16 0.089
26 1.430 −3.182 46 1.219 56 0.937 −0.579 1 0.040
27 1.590 −1.640 45 1.338 57 −0.176 −0.909 49 0.040
28 0.252 −1.517 59 1.240 58 −0.279 −1.348 31 0.040
29 −0.040 −1.703 9 1.214 59 0.333 −1.139 19 0.019
30 2.610 0.919 5 1.196 60 1.210 0.000

Numerical Example

An example with four shifts is analyzed to illus-
trate the clustering algorithm. This example was
chosen because it presents visually compelling evi-
dence of multiple shifts, which are detected by the
proposed clustering method. However, the X-chart
and CUSUM charts do not signal, despite the strong
visual evidence of four shifts. The 60 observations to
be analyzed are listed in the second column of Table
1, and the X-chart is shown in Figure 1. For this
data the centerline is the sample mean = 0.135, and
the estimated standard deviation based on the av-
erage moving range is MR /d2 = 1.39/1.13 = 1.23.
Control limits are shown 3 standard deviations from
the mean, as well as limits for zones that are 1 and 2
standard deviations from the mean. The largest de-

viation from the centerline is at observation 18 and
is well within the control limits. Thus, the X-chart
(without any supplementary runs rules) gives no sig-
nal.

Another widely used control chart is the CUSUM
chart, which is shown in Figure 2 and also fails to
signal. The plotted values for the CUSUM chart are
given in column 3 of Table 1. As recommended by
Sullivan and Woodall (1998), in this retrospective
analysis the deviations of each observation from the
sample mean are cumulatively summed, without sub-
tracting a constant. In this example, the cumulative
sums are all divided by the standard deviation, es-
timated from the moving ranges. The control limits
are chosen by simulation to be ±8.59, which gives
the same false alarm probability as the X-chart.
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FIGURE 1. X-Chart for the Example.

Next, the boundary removal sequence of the clus-
tering algorithm is calculated. Initially, 59 bound-
aries define 60 clusters of one observation each. The
distance is calculated for each boundary according to
Equation (1). The smallest distance is 0.019 which
is associated with boundary 19, so l∗59 = 19 and
d∗59 = 0.019. Boundary 19 is removed, merging ob-
servations 19 and 20, the distances are recalculated,
and the algorithm proceeds to the next step. The
sequences {l∗i } and {d∗

i } are given in Table 1. A plot
of {d∗i } is shown in Figure 3. As discussed later, to
control the false detection probability in light of the
multiple comparisons, only d∗

1 and d∗
2 enter into the

proposed decision rule. One decision rule is based
on the maximum of d∗1 and d∗

2, and a suitable max-
imum under this rule is shown in the figure. Since
d∗1 and d∗

2 are not both below the maximum, there is
an indication of an OC condition. A more effective
decision rule is given later.

When a signal is given, the chart can be further
analyzed for diagnostic information. In this exam-

FIGURE 2. CUSUM Chart for the Example.

FIGURE 3. Distances {d∗
i } for the Example.

ple, there is a sharp change between distances four
and five, a pattern corresponding to four shifts in the
mean. Thus, the plot can be interpreted to indicate
the presence of four shifts, with estimated locations
{l∗i , i = 1, . . . , 4} = {48, 37, 23, 15}. If the obser-
vations are divided at these locations, the p-values
for the test for a difference in the means of adjacent
clusters are, respectively, {0.0000152, 0.00000297,
0.00000687, 0.0000940}, confirming that these loca-
tions are reasonable in separating clusters with dis-
similar means.

The stopping rule proposed by McGee and Carle-
ton (1970) and Hawkins (1976) depends on the least
significant (maximum) p-value at each of the steps,
which is plotted in Figure 4. A large p-value indicates
that one of the boundaries is not really a change point
or valid change points are being masked. Thus, the
largest K for which all p-values are significant can be
taken as an estimate of the number of change points,
and the data are OC if K > 0. As Hawkins (1976)
notes, the significance should be interpreted conser-
vatively because of the multiple comparisons. With
a conservative significance level, such as 0.001, the
largest K for which all boundaries are significant is
4. With a less conservative significance level, such
as 0.02, then seven shifts would be indicated. How-
ever, the seven-shift solution is a finer partition of
the four-shift solution, so that if the four shifts are
real then their locations would be preserved in any
solution with a larger number of shifts.

The large p-value for a single shift illustrates
the masking problem—there may be no single loca-
tion that divides the data into clusters having sig-
nificantly different means, although division into a
greater number of clusters having significantly dif-
ferent means is possible.

Vol. 34, No. 4, October 2002 www.asq.org



mss # MS089.TEX; AP art. # 3; 34(4)

378 JOE H. SULLIVAN

FIGURE 4. Maximum p-values.

Hawkins (2001) discusses the inferential difficul-
ties in estimating the number of change points. He
points out that the null hypothesis of no shifts can be
tested against the alternative of exactly k segments
by a generalized likelihood ratio (GLR) test statistic,
noting that the test statistic does not follow the ex-
pected asymptotic chi-squared distribution. Hawkins
states that in the simplest case of normal data with
constant variance and at most a single change point
in the mean, there is not an asymptotic distribution
for the GLR test statistic, which increases without
bound with the sample size. He concludes that “the
failure of conventional asymptotics in even this easi-
est case is an indication of the technical difficulty of
the more general situation.” Thus, there is a benefit
in considering stopping rules that accurately control
the false detection probability, the next topic.

Alternative Detection Rules

The inference from the sequence of boundary dis-
tances about the presence of special causes is en-
riched by viewing the sequence as a vector obser-
vation whose distribution depends on the data. It is
useful to examine the effect of various OC situations
on this multivariate distribution. We can start by
considering the IC expected values of the first few
values of {d∗

i }, estimated from simulation, as shown
in Figure 5. The IC expected values are shown with
the heavy solid line, with thin dashed lines two stan-
dard deviations above and below. For example, the
IC expected values are 2.28 for d∗

1 and 3.57 for d∗2.
It is somewhat surprising that the distance of last
boundary to be removed, supposedly the most likely
location of a single shift, does not have the largest
expected value when the data follow the null distribu-
tion. Instead, it is the next-to-last-removed bound-
ary whose IC average distance is largest. In addition

FIGURE 5. Expected Values of d∗i with Shifts.

to the IC expected values, there are lines for OC con-
ditions with one, two, three and five equally spaced
shifts. The shifts are all the same size, 2σ.

The curve with a circle symbol shows the result
for one shift, which affects d∗

1 the most. The average
of d∗2 is decreased slightly, with minor perturbations
in the others. With two shifts, shown with a cross
symbol, d∗

1 and d∗
2 are increased, while the others are

affected very little. Three shifts (triangle) affect the
first three distances, and five shifts (square) affect
the first five distances. These patterns are useful in
diagnosis after an OC signal is generated.

Another OC model is the presence of one or more
outliers. Figure 6 shows the OC expected values with
one, two, or three equally spaced outliers. All of the
outliers have the same mean, which differs from that
of the adjacent observations by 12σ. The dashed
line with a circle symbol corresponds to a single out-
lier, showing an increase in the mean of d∗

2, a much
smaller increase in the mean of d∗1, and hardly any
change in the others. The plot for two outliers is
solid with a cross symbol, showing that the means

FIGURE 6. Expected Values of d∗i with Outliers.
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of d∗
2 and d∗

4 are increased. Three outliers are shown
with the dashed curve with the triangle plot symbol,
showing that the means of distances 2, 4, and 6 are
elevated. The effect on d∗

1 and d∗
2 is nearly the same

with 1, 2, or 3 outliers, so the plots nearly coincide
in the first two places.

This plot suggests that pure outliers mostly af-
fect the even-numbered distances. The rationale is
that n0 distinct outliers can be regarded as 2n0 shifts
in the mean. Distances beyond d∗2n0

are not af-
fected much, since they do not correspond to real
change points. If there are no mean shifts then the
clusters with m − 2n0 boundaries remaining will all
have about the same mean but will not have been
merged yet because there is a single outlier between
each larger cluster. Thus, all the boundary distances
are large. After an outlier is merged with an ad-
jacent cluster, the cluster mean changes, but only
slightly. Thus, the distance associated with either
of its boundaries is much smaller than the minimum
distance at the previous step. This accounts for the
sawtooth shape of the plot of {d∗

i }.

There is also an issue of effect size when comparing
multiple shifts. The effect size, measured by Equa-
tion (1) with population parameters, depends on the
size of the shift and the number of observations in
each cluster. In Figure 5, with a constant number
of observations and constant shift size, the effect size
decreases with the number of shifts.

In detecting special causes, we next consider how
to best use the single multivariate observation vector
in a decision rule. Since each OC distribution creates
a unique distribution of the distances, knowledge of
a specific OC pattern, such as three shifts or five
outliers, would sensibly guide the analysis process.
Generally, there is no specific OC pattern to be de-
tected, but rather the objective is the detection of
any reasonable number of shifts and/or outliers. To
create a decision rule, a summary statistic is needed.
An important issue is how many boundary distances
to use in the summary statistic. Since outliers in any
number have little effect on the first distance, using
it alone would not give much sensitivity in detecting
outliers. On the other hand looking at all of them
for the last significant d∗i , as suggested by McGee
and Carleton (1970) and Hawkins (1976), introduces
the multiple comparisons problem and makes con-
trolling the overall false detection probability diffi-
cult. Including the first two boundary distances in
the summary statistic seems reasonable because at
least one is affected by any number of shifts and/or

outliers. Furthermore, the null distribution should
change only slowly with the number of observations,
simplifying the task of finding an approximate ex-
pression for the critical value. For these reasons, a
summary statistic of the first two boundary distances
was sought. However, there is a trade-off, since in-
cluding a greater number can improve performance
with many shifts/outliers at the expense of perfor-
mance with a single shift/outlier.

We now focus on the bivariate vector {d∗
1, d

∗
2} and

depict the effect of different OC situations on its
statistical distribution. The IC and seven different
OC situations are considered. The statistical distri-
butions are depicted in Figure 7 by plotting 1000
samples from each distribution. These 8000 obser-
vations can be grouped visually into eight clusters,
corresponding to the eight situations that character-
ize the primary data. The IC cluster is closest to
the origin and shown with the plus symbol. The sit-
uations corresponding to one, two, or three equally
spaced shifts and one centrally located outlier are la-
beled. The shift conditions all include shifts of size
2, and include size 1 shifts for one and two shifts.
The outlier has shifts of size 8 and 16. The size is
measured by Equation (1) with population parame-
ters. The cluster corresponding to one shift of size
1 is centered at (11.57, 2.57), and it shows a large
change in the first distance compared with the IC
cluster, but little change in the second distance.

The OC distributions cluster farther from the ori-
gin than the IC distribution and in a direction that
depends on the specific nature of the OC situation.
For a specific configuration of outliers or shifts, the
direction is roughly constant, and the mean vector
is shifted out in proportion to the effect size. One
shift moves the mean vector along a nearly horizon-
tal line since only d∗

1 is affected. Two shifts move
the mean vector along a 42◦ line, with the clus-
ter for two shifts of size 1 centered at (6.60, 8.94).
Three shifts move the mean vector along the line
Tan−1[8.5/14.2] = 31◦. Since any reasonable num-
ber of equally spaced outliers has about the same ef-
fect on {d∗1, d∗2}, the displacement direction will not
change much with the number of outliers and corre-
sponds to the line Tan−1[15.5/5.1] = 72◦.

In distinguishing between the IC and the various
OC distributions, it may be tempting to consider all
OC conditions as contributing to a single distribu-
tion, but that can be misleading. The correlation
is negative for the IC distribution and also negative
if all the OC observations are taken as a single dis-
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FIGURE 7. Samples of {d∗
1, d

∗
2} from Various Distribu-

tions.

tribution. However, for any specific OC distribution
the correlation is positive.

So, how should we partition the bivariate space
to classify the data as either IC or OC? Ten plau-
sible alternative summary statistics were considered,
but for brevity only two are described here. The one
with the most uniform performance across all types
of OC conditions studied was based on the statistic
c′∗Σ

−1c∗, where c∗ is the vector (c−µ) with negative
elements replaced by zero, and c = (d∗

1, d
∗
2)

′. The ex-
pected value and covariance matrix of c are µ and Σ,
which are estimated from simulation. The decision
rule based on this statistic was used in all subse-
quent performance comparisons. Another statistic,
Max[d∗1, d

∗
2], was used to determine the critical value

for Figure 3.

Performance Comparison

The statistical distribution of the data can depart
from the IC distribution in infinitely many ways. The
model used here for multiple mean shifts is uniformly
spaced shifts alternating between two means. For
example, a single shift would be midway in the data,
and two shifts would be located after one-third and
two-thirds of the observations. An alternative model
would be random shift locations, but then the shifts
can resemble outliers if a shift is near the end of the
data or another shift. The model for one or more
outliers is equal spacing and equal mean shifts. The
change in the mean was adjusted with the number of
shifts or outliers to maintain the same effect size as
defined by Equation (1) evaluated using population
parameters. With R equally spaced shifts of equal
magnitude in m observations, there are m/(R + 1)
observations on either side of each shift, so the effect

size for each shift is

δM =
|µ1 − µ2|

σ

√
m

2(R + 1)
,

where µ1 and µ2 are the two means. For R equally
spaced outliers, there are 1 and (m − R)/(R + 1)
observations adjoining each shift, so the effect size is

δO =
|µ1 − µ2|

σ

√
m − R

m + 1
,

The performance was compared with 64 observations
simulated from normal distributions. The effect size
was δM = 1.15 for shifts and δO = 3 for outliers. The
values for |µ1−µ2|/σ are shown in Table 2. Without
any loss of generality, σ = 1 and µ1 = −µ2 were used
in the simulation.

Traditionally, performance comparisons of con-
trol charts for the prospective Phase II and Stage
2 of Phase I are conducted using the average run
length (ARL). In the retrospective analysis, Stage 1
of Phase I, the ARL is not meaningful because an
OC signal is generated for the entire batch of data.
For retrospective performance comparison, it is rea-
sonable to use the probability that a chart generates
an OC signal, referred to as the signal probability.
For a fair comparison, all charts should be adjusted

TABLE 2. Shift Sizes Used to

Evaluate Signal Probabilities

Condition |µ1 − µ2|/σ

IC 0
s01 0.288
s02 0.352
s03 0.407
s04 0.455
s05 0.498
s06 0.538
s07 0.575
s08 0.610
s09 0.643
s10 0.674
o1 3.024
o2 3.048
o3 3.073
o4 3.098
o5 3.124
o6 3.151
o7 3.154
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TABLE 3. UCL Values for Control Charts

Chart UCL

cusumSSD 8.38179
cusumMR 8.59497
cusumTV 8.41948

shewhartSSD 2.92160
shewhartMR 2.99504
shewhartTV 2.97686
Max[d∗

1, d
∗
2] 4.98551

c′∗Σc∗ 4.10918

to have the same IC signal probability, referred to
as the false detection probability. In selecting the
common false detection probability, it is reasonable
to use the false detection probability of a traditional
X-chart with known parameters and three sigma lim-
its, which is 1 − (1 − 2 ∗ Φ[−3])m, where Φ denotes
the cumulative distribution function of the standard
normal distribution. With 64 observations, the false
detection probability is 0.159, which is the value used
in the simulations. All signal probabilities were esti-
mated with 100,000 simulations.

The performance comparisons include three ver-
sions each of the CUSUM chart and the X-chart.
The charts differed in the estimation of the stan-
dard deviation, using the sample standard deviation
(SSD), the average of the moving ranges divided by
d2 (MR), or the true value (TV). Of course, the true
value of the standard deviation would not be known
in practice, so it is not a practical analysis tool, but
provides useful insight into the performance of the
chart with the best possible estimator. For each ver-
sion, the control limits were determined by simula-
tion and are given in Table 3. The control limits for
the X-chart with the true σ would be exactly 3, in-
stead of 2.98, except for the slight inaccuracy from
simulation. The UCL for Max[d∗1, d

∗
2] was used in

Figure 3.

Figure 8 compares the signal probabilities of the
clustering algorithm with those of the CUSUM charts
using the three alternative estimators. Various data
situations appear on the horizontal axis. The left-
most item is the IC situation. The next 10 corre-
spond to 1 to 10 shifts, respectively, and the last 6
correspond to 1 to 6 outliers, respectively. The per-
formance of the clustering algorithm is shown with
the heavy solid line and a square symbol. For de-
tecting a single shift midway in the observations, the
CUSUM chart is unexcelled. However, as the number

FIGURE 8. Signal Probability for CUSUM Chart and

Clustering Algorithm.

of shifts increases, the signal probability falls until,
at 10 shifts, it is only a little more than the false
detection probability. Furthermore, both of the fea-
sible CUSUM charts are biased, in the sense that
the signal probability with any number of outliers is
less than the false detection probability. The advan-
tage of the clustering algorithm is that it maintains a
nearly uniform signal probability over all of the OC
conditions.

The clustering algorithm performance is compared
with that of the X-chart (without runs rules) in Fig-
ure 9. The X-chart does well in detecting outliers,
but not very well in detecting a single shift. Again,
the clustering method gives a more uniform perfor-
mance over the collection of OC situations.

Accurate estimation of the variance is important
in the performance of any of the charts. As men-
tioned earlier, it is of interest to see how sr performs
in estimating σ. It is compared with the sample stan-

FIGURE 9. Signal Probability for X-Chart and Clustering

Algorithm.
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FIGURE 10. Comparison of Standard Deviation Estima-

tors Under Various OC Situations.

dard deviation and the average of the moving ranges
divided by d2 in Figure 10. The sample standard
deviation is the one most inflated by any of the OC
situations. The performance of the average of the
moving ranges is nearly as bad as the sample stan-
dard deviation in the presence of outliers. The clus-
tering estimator sr is fairly robust to outliers and
nearly as good as the moving range estimator with
the presence of shifts.

Conclusion

An algorithm has been described for detecting the
presence of, and identifying the likely location(s) of,
one or more shifts in the mean and/or outliers in
individual observations. The main advantage of the
proposed decision rule is the more uniform detection
probability with respect to different out-of-control
situations. While a CUSUM chart has greater detec-
tion probability for a single shift, it is less likely to
detect multiple shifts and unlikely to detect the pres-
ence of any number of outliers. On the other hand,
an X-chart does not do as well in detecting shifts, al-
though it does better with outliers. In retrospective
analysis, where multiple shifts and/or outliers may
be present, the clustering algorithm gives a compu-
tationally simple way to detect the presence of shifts
and/or outliers in any reasonable quantity. Further-
more, the clustering algorithm can be generalized to
effectively detect shifts in the variance, trends, or for
a variety of other OC conditions.
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